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On Cartesian Products of Good Lattices 

By S. K. Zaremba 

Abstract. Good lattices yield a powerful method of computing multiple integrals. 

Asymptotically, a lattice generated by one good lattice point is much more efficient 

than a Cartesian product of such lattices. However, if the number of dimensions is 

large, this does not always apply to the case when the number of points remains within 

reasonable limits. Examples of such products of two or three lattices being more effi- 

cient than good lattices generated by single lattice points are systematically presented. 

Additional symmetries of Cartesian products of lattices offer a further advantage when 

the integrand has to be symmetrized beforehand. 

1. Good lattices are known as a most efficient tool for computing numerically 
multiple integrals (see, for instance, [11, [31, [71). Given the s-dimensional unit inter- 

val 

QS O Xi 1 (i =< , , S), 

we choose an integer m, described as the modulus, and a lattice point g, that is, a point 
or, equivalently, a vector with integral coordinates. Throughout, the coordinates of a 

point will be denoted by a letter with subscripts going from 1 to s, the point itself being 
denoted by the same letter in bold face. We put 

R(h) = max(, 1h1 I1) . . . max(1, IhsI) 

and denote by p(g) the minimum of R(h) over all lattice points h # 0 = (o,.. ., 0) 
satisfying 

(1) g * h--O (mod m), 

where the dot denotes a scalar product. Following Hlawka [1], g is described as a good 

lattice point modulo m if p(g) is sufficiently large in relation to m. 

Given a function f defined over QS, we take, as the approximate value of 

fQs f(x) dx, the expression 
n-1 

(2) m- l1E f(m- kg), 
k=O 

where the coordinates of m- 1 kg are reduced modulo 1. This reduction becomes 

unnecessary if we think of f as being represented by a multiple Fourier series 

(3) Z chexp(2rTih - x). 
hEEZ 

If, for some integer r > 1: (i) The mixed partial derivative 
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arsf 

(4) ax . . . * r 

is of bounded variation in the sense of Hardy and Krause over QS, and (ii) the values 

off and, when r > 2, of its partial derivatives up to 3(r-1i)s/(faxrl- axr- I 

agree on opposite sides of QS; then 

(5) 1chI <?KrR(h)-(r+l), 

where Kr depends on the total variations of (4) in the sense of Vitali over QS and its 

faces [71] 
It follows easily that under such circumstances the absolute value of the error of 

integration is bounded by 

(6) KKrp(r+ 1)(g) 

where, for any n > 2, p(n)(g) = z R(h)-, this sum being extended to all lattice 

points h # 0 which satisfy (1). It has been proved [71 that for any sufficiently large 

modulus m and any lattice point g, 

(7)p(fl)(g) < 23s+1 (log m)S-1 

(7) 
, 
~~~~~~(s - 1)!(log 2)slip(g)nl 

and [81 that for any sufficiently large m there exist lattice points g modulo m satisfy- 

ing 

(8) p(g) > (s - 1)!m/(2 log m)S-1. 

However, numerical evidence ([41, [21) suggests that p(n)(g) = Q(p(g)-n log m), and 

that for sufficiently large m, there exist lattice points with p(g) of the order of 

m/(log m)S-2; this has been proved for s = 2 (see, for instance, [61). 

2. In two dimensions, lattice points with the best possible ratio p(g): m are con- 

structed with Fibonacci numbers [61, but in a higher number of dimensions, a labori- 

ous search for good lattice points is necessary. The first tables of good lattice points 

were produced by A. I. Saltykov [51 following a method devised by Korobov; they are 

reproduced in an appendix to a book [31 by the latter, and also in [4, pp. 158-1651, 
where the corresponding values of p(2) are shown as well. It should be noted, though, 

that these lattice points, in three to ten dimensions, were obtained by a suboptimiza- 

tion procedure; more precisely: 
(1) The set of numbers considered as possible moduli was restricted to primes, or, 

above 10007, to products of two large primes; in fact, later computations indicated 

that, on the contrary, the most favorable moduli were, with very few exceptions, com- 

posite numbers, and, more particularly, numbers having at least one small divisor. 

(2) The lattice points were restricted to the type of (1, a, . .. , as 1) in the 

case of prime moduli, and to the type of 

(p1 +P2,Plb +p2a, . .* ,p1bs-1 +p2as-1) 

when the modulus was a product p1 p2 of two primes. 



548 S. K. ZAREMBA 

(3) The optimized function was neither p(g) nor P(n)(g) for any particular choice 
of n, but, in the case of a prime modulus, a function H(a) such that H(a) - 1 was of 
the same order of magnitude as p(2)(g) without, however, being exactly proportional 
to it. When the modulus was a product of two primes, the connection between the 
minimized function and P(2)(g) was less obvious. 

Tables of good lattice points in three and four dimensions based on the optimiza- 
tion of p(g) with g = (1, g2,. . . , gs) were compiled by Dominique Maisonneuve [41. 
An additional table of good lattice points in three dimensions with moduli ranging from 
2120 to 6066 [2] was published by Gershon Kedem and the present author following 
the same principles. Both sets of tables show the values of p(2)(g) and P(4)(g) for each 
g. For two-dimensional Fibonacci lattices, a short table of values of p(2)(g) can be 
found in (91. 

3. The advantages of the method of good lattice points for the computation of 
multiple integrals are obvious from what was said above, but the condition (ii) of "peri- 
odicity" imposed on the integrand may seem to point to a serious limitation of the 
method. However, there are ways (see, for instance [3, pp. 52-63], or [7, pp. 55-65]) 
of transforming the integrand so as to satisfy this condition without affecting the value 
of the integral. Methods involving changes of variables greatly increase the variation of 
the partial derivatives of the integrand over QS, and, therefore, also the value of the 
coefficient Kr in the upper bound of the error of integration (7, pp. 58-59]; for this 
reason, the present author would not recommend the use of such methods. The sim- 
plest method, which is probably the only practical one in the case of a very large num- 
ber of dimensions, consists of symmetrizing the integrand f(x), that is, replacing it by 
the function 

F(x) = 2-s{,f(x,, . . ,Xs) + f(l-l x2 *~X * ,xs) 

+ f(xl, l- X2,3, * * Xs) + f(Il- xl, l-x2,x3,.... . ,Xs) 

+ - - -+f(l -x1, 1 -x2,. ..,-xs)}; 

if f satisfies (i) with r > 1, F satisfies (i) and (ii) with r = 1. 
So far, nobody seems to have noticed that when we use this method with good 

lattice points (or, for that matter, not so good ones), the number of values of f to be 
computed can be halved, owing to a symmetry in the lattice generated by a lattice 
point modulo m. Indeed, the congruence 

(m - k)m- li=1 -km-1g1 (mod 1) (i = 1, ... , s) 

is not affected by the reduction of the coordinates modulo 1. Consequently, whenever 
the lattice reduced modulo 1 in each coordinate contains a point (xl, ...., xs) corre- 
sponding to a value of k satisfying 0 < k < m, it also contains the point (1 - xi, . . . 

1- xs) obtained from the former by substituting m - k for k. The point (0, .. ., 0) 
is in an exceptional situation, because the reduced lattice does not contain the point 
(l, ..., 1), which would correspond to k = m. However, we can take care of it by 
replacingf(0,... .0) by 2-1 f(0,.. .0) +f(l, . . ., 1)}. Thus we can replace the inte- 
grand by 
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F*(x) = 21-sf(xl, . . . x)+f(l -X1,X2,. . . XS) 

+f(X1, 1-x2X3, ... . ,xs) +f(l -X1, 1 -X2,x3, . . . ,xS) 

+* * * +f(l-x1,i .. I 1-xs_ ,Xs)}. 

The effect of the simplification arising out of the use of F* instead of F becomes even 
more important when, instead of a lattice generated by one lattice point g, we use a 

Cartesian product of lattices. It will be seen that such a procedure can be unexpectedly 

advantageous in some cases. 

4. If we think of QS as a Cartesian product QS x QS, we can represent f as a 

function f(x', x") of an s'-dimensional variable x' and an s "-dimensional variable x". 
Having chosen good lattice points g' modulo m' and g" modulo m" in s' and s" dimen- 

sions, respectively, we take 
m'-I m"-1 

(9) ~~~(m 'm"1) - 1 E: E f(m '- 1 k'g' m"- `lk"g") 
k'=O k =O 

with all coordinates reduced modulo 1, as an approximation of fQs f(x)dx. If f is 

given by (3) and ch satisfies (5), that is, if 

lchI <KrR(h')-(r+l)R(hF)-f(r+1), 

where h' and h" are the components of h, (9) becomes 
m '-1 m"-1 

in 'in" E2 Ch E 2 exp(2nTi(m'-1k'h' * g' + m"-lk"h" g" 
m m hGZs k'=O k =O 

and an upper bound of the absolute error of integration is obtained from this expression 

by subtracting the term in co and substituting for lChl its upper bound; the bound of 

the error is thus 
m'-1 

Krm'- R(hr -(r+ 1) , exp(2irim'-1k?h? * g ) 
heZ k'= O 

m"- 
x m -1 , R(h")-(r+l) E exp(2irim"1k"h" * g") Kr 

heZs k =0 

=Kr {(p(r+)(g') + l)(P(r+i)(g") + 1) - 1}. 

This expression will be denoted by KrC2(r+l )(g2 , g"). 
A similar argument applies to Cartesian products of more than two lattices. In 

particular, if we have three lattices generated by lattice points g', g", and g"' in sr, s" 
and s"' dimensions, respectively, (s' + s" + s"' = s), if the integrand satisfies the same 

conditions as before, and if we take as the approximate value of the integrand the 

average of f over the Cartesian product of the lattices generated by g', g", and g"' and 

reduced modulo 1 in each coordinate, the error of integration is bounded in absolute 

value by 

KrC(r+ l)(g', g", g"') = Kr{(p(r+l)(g?) + l)(P(r+l)(g",) + l)(P(r+l)(g"') + 1) -1}. 

5. A special advantage of Cartesian products of good lattices arises when, in 
order to satisfy (ii) with r = 1, we symmetrize the integrand as described in Section 3. 
Each of the lattices in the product has the previously pointed out property of symmetry. 
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As a result of it, we only have to replace the integrand by an average of 2`2 values 
instead of 25 1 if we had a product of two lattices, and of merely 2` 3 values if we 
had three lattices in the product. Of course, the value of f at the origin has to be 
replaced by the obvious average of 4 or 8 values according to the number (two or three) 
of lattices in the Cartesian product. 

This might still appear hardly useful since, by introducing a Cartesian product of 
two or three lattices, we lose a fair part of the general advantages of the method of 
good lattice points over iterated integration. However, this argument applies only to 
sufficiently large moduli, and "sufficiently large" in the context of large numbers of 
dimensions can be very large indeed. If the number of points over which we are willing 
to average the integrand is not "sufficiently large", a Cartesian product of two, or even 
three lattices may be more advantageous than a lattice generated by a single lattice 
point. Such a product is, of course, also a lattice; here and in what follows, by a lat- 
tice we mean a lattice of points reduced modulo 1 in each coordinate. We shall say 
that a lattice L dominates a lattice L' in the same number of dimensions if the number 
of points of L is smaller than that of L' and for L the value of p(2), C(2) or C(2) 
according to the case is smaller than, or equal to, the relevant parameter of L'. 

6. Here are some systematically compiled examples of Cartesian products of lat- 
tices dominating good lattices generated by single lattice points. We compare lattices 
obtained in six to ten dimensions by A. I. Saltykov [51 with products of Fibonacci 
lattices in two dimensions and of lattices due to D. Maisonneuve [4] in three and four 
dimensions. In order to have a fair comparison, the values of C2(2) and C (2) are 
rounded off to the number of decimals with which the corresponding p(2) was com- 
puted by D. Maisonneuve for Saltykov's lattices. We shall denote by L(m;g,, . . . ,gs) 
the lattice generated by g = (gl, * . . , gs) modulo m, and by x the Cartesian product 
of such lattices, squares being also understood as Cartesian products. 

Six dimensions. L(44; 1, 14, 20)2 (1936 points) with C(2) = 1.9 dominates 

L(2129; 1,41,1681,,793,578,279) with p(2)-2.0. 
Seven dimensions. L(66; 1, 10, 24) x L(266; 1, 24, 40, 116) (17556 points) 

with C(2) = 1.05 - 1.1 dominates 
2 

L(18101; 1, 17487, 14976, 44, 9186, 7308, 1936) with p(2) - 1.1. 

Eight dimensions. L(118; 1, 18, 40, 52) x L(168; 1, 30, 72, 82) (19824 points) 
with C(2) = 3.6 dominates 

L(24041; 1, 17441, 21749, 5411, 12326, 3144, 21024, 6252) with p(2) = 3.9. 

L(168; 1, 30, 72, 82)2 (28224 points) with C(2) = 2.6 and L(180; 1, 8, 46, 74)2 
(32400 points) with CM(2) = 2.3 dominate 2 

L(33139; 1, 3520, 29553, 3239, 1464, 16735, 19197, 3019) with p(2) -2.7. 

L(266; 1, 24, 40, 116)2 (70756 points) with C(2) = 1.17 1.2 dominates 
(weakly, though) 

L(71053; 1, 60759, 26413, 24409, 48215, 51048, 19876, 29096) with p(2) = 1.2. 
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Nine dimensions. L(10; 1, 6) x L(26; 1, 8, 12) x L(118; 1, 18, 40, 52) (30680 
points) with C(2) = 9.0 dominates 

L(33139; 1, 68, 4624, 16181, 6721, 26221, 26661, 23442, 3384) with p(2) = 13.5, 

and also, 
L(46213; 1, 8871, 40115, 20065, 30352, 15654, 42782, 17966, 33962) 

with p(2) = 9.5. 

The latter is also dominated by L(35; 1, 11, 16)3 (42875 points) with C(2) = 8.4. 
L(35; 1, 11, 16)2 x L(44; 1, 14, 20) (53900 points) with C(2) = 6.6 dominates 

L(57091; 1, 20176, 12146, 23124, 2172, 33475, 5070, 42339, 36122) 
with p(2) = 7.5. 

L(35; 1, 11, 16) x L(44; 1, 14, 20)2 (67760 points) with C(2) = 5.1 dominates 

L(71053; 1, 26454, 13119, 27174, 17795, 22805, 43500, 45665, 49857) 
with p(2) = 6.0. 

L(44; 1, 14, 20)3 (85184 points) with C(2) = 3.9 dominates 

L(100063; 1, 70893, 53211, 12386, 27873, 56528, 16417, 17628, 14997) 
with p(2) = 4.1. 

Ten dimensions. Saltykov produced six good lattices; but one of them, of 
145087 points with p(2) = 15, is dominated by his own lattice of 130703 points with 
p(2) = 14. Clearly, the former lattice can safely be ignored; its appearance in the table 
was obviously due to the fact that its author neither optimized nor computed P(2)(g) 
(see Section 2). Each of the remaining five lattices is dominated by at least two Carte- 
sian products of three lattices. We show here only three such products, namely those 
which appear to be the most advantageous. 

L(26; 1, 8, 12)2 x L(118; 1, 18, 40, 52) (79768 points) with C(2) = 14 domin- 3 
ates Saltykov's lattices of 85633, 103661, 115069, and 130703 points with p(2) = 24, 
21, 17, and 14, respectively. 

L(8; 1, 5) x L(118; 1, 18, 40, 52)2 (111392 points) with C(2) = II dominates 
Saltykov's lattices of 115069, 130703, and 155093 points with p(2) = 17, 14, and 12, 
respectively. The last of these lattices is also dominated by 

L(10; 1, 6) x L(118; 1, 18, 40,5 2)2 (139240 points) with C (2) = 9. 3 

So far we did not take into account the advantages of Cartesian products of lat- 
tices which arise when the integrand has to be symmetrized. By way of example, it 
may be worth noting that if the integrand has to be symmetrized in at least three 
dimensions, the Cartesian product 

L(44; 1, 14, 20)2 x L(266; 1, 24, 40, 116) (514976 points) 

with C(2) = 3.25679 - 3 will require less computing work than Saltykov's lattice of 
155093 points, while yielding an upper bound of the computing error which is about 
one-quarter of that which corresponds to the latter lattice. 
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